
Elastic Bulk Synchronous Parallel Model
for Distributed Deep Learning

Xing Zhao∗, Manos Papagelis∗, Aijun An∗, Bao Xin Chen∗, Junfeng Liu†, Yonggang Hu†
∗Department of Electrical Engineering and Computer Science, York University, Toronto, Canada

†Platform Computing, IBM Canada, Markham, Canada

{xingzhao, papaggel, aan, baoxchen}@eecs.yorku.ca;{jfliu, yhu}@ca.ibm.com

Abstract—The bulk synchronous parallel (BSP) is a celebrated
synchronization model for general-purpose parallel computing
that has successfully been employed for distributed training
of machine learning models. A prevalent shortcoming of the
BSP is that it requires workers to wait for the straggler at
every iteration. To ameliorate this shortcoming of classic BSP,
we propose ELASTICBSP a model that aims to relax its strict
synchronization requirement. The proposed model offers more
flexibility and adaptability during the training phase, without
sacrificing on the accuracy of the trained model. We also propose
an efficient method that materializes the model, named ZIPLINE.
The algorithm is tunable and can effectively balance the trade-
off between quality of convergence and iteration throughput, in
order to accommodate different environments or applications. A
thorough experimental evaluation demonstrates that our pro-
posed ELASTICBSP model converges faster and to a higher
accuracy than the classic BSP. It also achieves comparable (if not
higher) accuracy than the other sensible synchronization models.

Index Terms—Distributed deep learning, parameter server
framework, GPU cluster, data parallelism, BSP, SSP, ASP

I. INTRODUCTION

The parameter server framework [1] [2] has been widely

adopted to distributing the training of large deep neural

network (DNN) models [3] [4]. The framework consists of

multiple workers and a logical server that maintains globally

shared parameters, typically represented as dense or sparse

vectors and matrices [5], and it supports two approaches:

model parallelism and data parallelism [6]. In this paper we

focus on data parallelism. Data parallelism refers to partition-

ing (sharding) of large training data into smaller equal size

shards and assigning them to workers. Then, the entire DNN

model is replicated to each worker. During the training, each

worker trains the replica model using its assigned data shard,

sends the locally computed gradients (via push operation) to

the server that maintains globally shared parameters (weights)

and receives back updated global weights from the server (via

pull operation). That weight synchronization step is critical

as it provides to the server a means of controlling the iteration

throughput (to boost the convergence speed in wall-clock time)

and the quality of convergence (i.e., the accuracy).

Due to its importance a number of synchronization models
have been proposed, the most important of which are the

asynchronous parallel (ASP), the bulk synchronous parallel
(BSP), and the stale synchronous parallel (SSP). ASP [1] is

the simplest model as it assumes no weight synchronization

worker1

worker2

worker3

worker4

ElasticBSP time interval per iteration within a Superstep for each worker

barrier barrier

Superstep1 Superstep2

worker1

worker2

worker3

worker4

BSP time interval per iteration for each worker

barrier barrier barrier barrier

Superstep1 Superstep2 Superstep3 Superstep4

computing
time

communication
time

Fig. 1. Vanilla BSP and our proposed ELASTICBSP. Each barrier represents
the time of weight synchronization among workers and a superstep represents
the time between barriers. In BSP the superstep is fixed to a number of k
iterations and all workers have to wait for each other at the end of their k
iterations (k = 1 is shown, which is typical). In ELASTICBSP, the time the
barrier is imposed varies and each superstep can allow a different number of
iterations per worker. These values are determined at runtime by our proposed
ZIPLINE method that achieves minimum overall waiting time of all workers.

— workers always receive different versions of weights from

the server at every iteration. BSP [7] is the most celebrated

synchronization model. A critical component of it is the

barrier synchronization, where workers reaching a barrier
have to wait until all other workers have reached it, as

well (see Figure 1). During the training phase of a DNN

model, each worker, at each iteration, computes the model

gradients based on the local data shard and the local weights

(originally from the server) and sends the gradients to the

server. The server aggregates the gradients of all workers,

performs weight update (as one synchronization) and signals

the workers to retrieve the latest weights for the next iteration.

The workers replace their local weights with the latest weights

from the server and start a new iteration. SSP [2] provides

an intermediate approach to the two extremes achieved by

the ASP and the BSP models. It performs synchronization,

but mitigates the strict synchronization requirement of BSP.

In principle, it monitors the iteration difference between the

fastest and the slowest workers and restricts it to be within a

threshold via enforcing synchronization on both workers upon

the excess of the threshold.

1504

2019 IEEE International Conference on Data Mining (ICDM)

2374-8486/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDM.2019.00198

The aforementioned models exhibit certain limitations. In

ASP there is no need for synchronization, so the waiting

time overhead of the workers is eliminated. However, the

convergence in the training might be dramatically affected

due to inconsistent weight updates. On the other hand, a

prevalent shortcoming of the BSP is the strict synchronization

requirement it imposes. As shown in Figure 1, all workers

are waiting for each other by a synchronization barrier. Each

barrier represents the time of the weight synchronization

among workers and a superstep represents the time between

subsequent barriers. In BSP-like models the superstep is fixed

to a number of k iterations and all workers have to wait for the

straggler at the end of their k iterations (k = 1 is typical), such

as in [8]. In SSP, while the strict synchronization requirement

of BSP is removed, there is still a requirement to manually

set the threshold that controls the iteration difference among

workers, which remains fixed throughout the training period.

Further, SSP does not consider the computational capacity of

each worker but merely count on the number of iterations of

each worker.

To ameliorate the shortcoming of current synchronization

models, we propose ELASTICBSP, a model that aims to

relax the strict synchronization requirement of the classic BSP

for better convergence. Contrary to SSP, the proposed model

considers the computational capacity of workers, accordingly,

offers more flexibility and adaptability during the training

phase, without sacrificing on the accuracy of the trained

model. The key idea of ELASTICBSP is that the time the

barrier is imposed varies and each superstep can permit a

different number of iterations per worker, offering elasticity
(see Figure 1). We also propose an efficient method that

materializes the model, named ZIPLINE. ZIPLINE consists

of two phases. First, k future iteration intervals (timestamps)

of each worker are predicted at run time based on their

most recent intervals, assuming a stable environment. Then,

a one-pass algorithm operates over the predicted intervals of

all workers and performs a lookahead greedy algorithm to

determine the next synchronization time (i.e., a time that the

overall workers’ waiting time overhead is minimized). The

algorithm can effectively balance the trade-off between accu-

racy and convergence speed, in order to accommodate different

environments or applications. The major contributions of this

work are as follows:

• we propose ELASTICBSP, a novel synchronization model

for scaling the training of distributed deep learning

models. ELASTICBSP replaces the strict synchronization

requirement of other BSP-like models with an online

decision making about the best time to impose the

next synchronization barrier. The model guarantees the

convergence for a large number of iterations.

• we design and develop ZIPLINE, a one-pass algorithm

that can efficiently materialize the ELASTICBSP model.

ZIPLINE performs online optimization with lookahead

to predict the next best synchronization time. It also

outperforms sensible baselines.

worker1

worker2

worker3

worker4

time interval per iteration for each worker

t1,1

t2,1

t3,1

t4,1

t1,2

t2,2

t3,2

t4,2

t1,3

t2,3

t3,3

t4,3

iteration
interval

computing
time

communication
time

timeline

4 unique colours

Fig. 2. Iteration intervals measured by timestamps of push requests from
workers. A dotted line represents the time a push request arrives at the server
from a worker. An iteration interval consists of gradient computing period
(solid block) and communication period (blank block). All workers’ ending
timestamps can be mapped onto a timeline. Each timestamp on the timeline
is associated to one of the workers. A set which is represented by the bracket
always keep n unique values (colors) of workers. ZIPLINE scans the points
from left to right on the timeline, takes one color point into the set per iteration.

• we present a thorough experimental evaluation of our

ELASTICBSP model materialized by the ZIPLINE on two

deep learning models on two popular image classification

datasets. The results demonstrate that ELASTICBSP con-

verges much faster than BSP and to a higher accuracy

than BSP and other state-of-the-art alternatives.

The remainder of the paper is organized as follows. Section

II introduces our proposed ELASTICBSP model and its prop-

erties. Section III formally defines the problem of interest.

In Section IV, we present algorithmic details of sensible

baselines and our proposed method ZIPLINE to materialize

ELASTICBSP. Section V presents an experimental evaluation

of the methods. We review the related work in Section VI and

conclude in Section VII.

II. ELASTIC BULK SYNCHRONOUS PARALLEL MODEL

In this section, we propose a novel synchronization model

that has the premise to ameliorate drawbacks of current

models, without sacrificing their benefits.
The BSP model guarantees the convergence on training

the DNN models since it is logically functioning as a single

server. However, it introduces a large waiting time overhead
due to having to wait for the slowest worker in every single

iteration (a mini-batch). On the other hand, the ASP model

does not perform any synchronization, so waiting time for

synchronization is minimal, however, it is risky to be used

due to its asynchronous scheme that renders the convergence

uncertain [9]. The SSP model offers an intermediate solution

to the above two extremes. It guarantees the convergence [2]

when the number of iterations is large and the user specified

threshold β is small. However, it depends on manually fine-

tuning the β hyper-parameter which is non-trivial.
Motivated by the limitations of the current state-of-the-art

synchronization models, we propose ELASTICBSP. ELAS-

TICBSP aims to relax the strict synchronization requirement

of BSP. The key properties of ELASTICBSP are the following:

• The server deals with sequential decision making regard-

ing the best time that the next synchronization barrier

1505

should be imposed (a time when the minimum waiting

time for the entire system is achieved). The decision is

based on a prediction model that utilizes information

about the most recent time interval of each worker

available to the server to predict its future intervals.

The prediction is based on an online optimization with

lookahead and assumes a specific limit R on how many

future intervals for each worker should be considered.

The need for a specific limit comes from the need to

control the algorithm’s run time, since that can increase

exponentially as the lookahead limit R increases.

• The convergence guarantee of the model follows the

theoretical analysis of SSP [2], where a small iteration

difference β exists in some period τ (a superstep). In the

case of ELASTICBSP, the iteration difference is bounded

by the lookahead limit R in some period τ that is defined

by the next best synchronization time. By the end of the

period τ , the synchronization barrier is posed to all the

workers where gradients aggregation is carried out on the

server, similarly to BSP, the weights are synchronized.

ELASTICBSP offers elasticity in the sense that the distance

between two consequent synchronization barriers is not fixed,

but it is determined online. In addition, the waiting time is not

determined by a fixed iteration difference between the fastest

and the slowest workers (as in SSP), but based on the optimal

time to synchronize in order to minimize the waiting time.

Moreover, the synchronization time is always bounded within

the lookahead limit R, so it will not simulate the ASP model.

III. PROBLEM FRAMEWORK

Most data centers follow the high availability criteria prac-

tise [10], it is realistic to assume that the cluster is running

in a stable environment where each iteration time interval

(including batch processing and gradient computing) of a

worker is similar in a short period. If the worker is not

responding in a reasonable time, it will be taken out from the

distributed system (and the algorithm in our case). Note that

our algorithm is orthogonal to the fault torrent problem. Then,

we can heuristically predict the future iteration intervals for

workers (see Figure 2) based on their most recent iterations.

The Problem. For n workers in a cluster, each worker p has to

process many iterations in a training where each iteration time

interval on the same worker p is similar. Each iteration interval

is measured by the starting and the ending timestamps of

processing an iteration. Suppose we predict R future iterations

for each worker. For any worker p, it has a set Sp containing

a list of starting and ending timestamps of iterations. Most of

both timestamps are overlapped for the subsequent iterations.

Thus, we only need to use the ending timestamps epi−1, e
p
i

to measure an iteration i. Mathematically we define the set

Sp = {ep1, ep2, ..., epR} where epi , i ∈ [1, R] stands for an ending

timestamp of worker p and p ∈ [1, n]. The set Sp contains R
iterations of worker p. We need to find a set Z containing

n ending timestamps, one from each set Sp, are closest to

each other on the timeline. The maximum and minimum

difference of these n ending timestamps is the waiting time for

a synchronization. The smallest timestamp indicates the time-

spot for the fastest worker starts waiting whereas the largest

timestamp indicates the synchronization barrier to which all

workers have to stop for the synchronization.

From each of these sets Sp, p ∈ [1, n], we pick one element

epj , j ∈ [1, R] to form a new set Z = {epj}, p ∈ [1, n]. The

difference between the maximum and the minimum numbers

of the set Z is defined as dZ = max(Z)−min(Z). The slowest

worker and the fastest worker finish their current iteration at

time max(Z) and min(Z) respectively. dZ is the waiting time

of the fastest worker. Thus, dZ dominates the overall waiting

time for a synchronization since other workers’ waiting time

were overlapped by the fastest worker’s. We are looking for

the optimal set Z∗ which gives the minimum dZ∗ from all

possible combinations of Z. Hence, our objective function is:

Z∗ = argmin
Z

dZ

IV. METHODOLOGY

To solve the proposed problem, we first investigate the brute

force approach. We analyze the naive brute force searching,

naive search and develop an optimized version of brute

force algorithm named FullGridScan since it is infeasible to

implement the naive search as scaling the number of workers.

We next introduce our approach ZIPLINE to bring down the

computation complexity. Lastly, we show the computation and

space complexity of the two approaches in Table I.

Naive search. In order to find the minimum difference dZ∗ , a

straightforward approach is to use Brute Force. It first checks

all possible combinations of selecting a single element from

n sets where each set S has R elements. There are (CR
1)n

combinations. Second, it computes their dZ values and finds

the minimum value dZ∗ from all dZ values. The set Z∗ which

yields the minimum value dZ∗ is the object we are looking for.

The computation complexity of this approach is O(Rn). The

space complexity is O(Rn) to hold the (CR
1)n combinations.

GridScan. An optimized heuristic brute force algorithm (Al-

gorithm 1) as a basis component for FullGridScan. We con-

sider the predicted R iterations’ timestamps for n workers

form a n × R matrix M where each row of the matrix Mp

represents a worker p, p ∈ [1, n] and each row Mp has R
predicted iteration points (timestamps) Mp,i = epi , i ∈ [1, R]
for worker p. Designate any point in M, we can always find

a point from other rows with the shortest distance to it. Let

these closest points from other rows along with the designated
point in set Z and we obtain dZ . Accordingly, designate a row

of points, we can find R sets of Zs associated to every point

of the designated row. Finally, we can find the set Z∗ from

R sets of Zs with the minimum dZ∗ . To guarantee we do

not miss any early point (on the timeline), we designate the

row with the minimum (earliest) timestamp (i.e., Mp,1) as the

designated row to start the search which costs Θ(n). The total

computation complexity is O(R2n). The outer loop over the

points on the designated row costs R iterations and the inner

loop over each points in n− 1 rows (workers) constructs one

combination Z of distinct p value points costs (n − 1) · R

1506

Algorithm 1 GridScan - search the set Z∗ with minimum dZ∗

1: procedure MINdSET(M)
� the n×R Matrix M with predicted points

2: Z∗ ← ∅

� the set Z∗ takes n elements with unique worker id p, p ∈ [1, n]
3: dZ∗ ← ∞
4: find the row Mpb with the smallest initial time Mpb,1 from

set {Mp,1}
� Mpb,1 = min({Mp,1}), p ∈ [1, n], {Mp,1} the first column
of M

5: for each point e ∈ worker Mpb do
6: Z ← ∅

7: add e to Z
8: for each worker Mp ∈ M,Mp �= Mpb do
9: for each point Mp,i ∈ Mp do

10: Mp,min ← argminMp,i
|Mp,i − e|

� the shortest distance point to e
11: add Mp,min to Z

12: dZ ← max(Z)−min(Z)
13: if dZ < dZ∗ then
14: Z∗ ← Z; dZ∗ ← dZ
15: return Z∗ � the set with dZ∗

iterations as there is R points per row. During the search, we

only need to keep the set Z∗ with the minimum waiting time

dZ∗ per point in the designated row which requires storage

space θ(n). Along with the storage for Rn points, the space

complexity is O(Rn).

FullGridScan. In GridScan, R combinations (of Z) are con-

structed and each of which waiting time dZ is computed.

We expect some critical combinations (containing the smaller

waiting time dZ) may be missed. In order to cover more

useful combinations during the search, FullGridScan rotates

the designated row of GridScan in turn to repeat Algorithm 1

without the line 4 till all n rows (workers) in M are covered.

It rapidly increases the computation complexity to O(R2n2).
FullGridScan therefore covers Rn combinations in total versus

R combinations explored in GridScan. The storage complexity

however remains the same as GridScan.

ZipLine. ZIPLINE scans through the data points only once in

linear complexity Θ(Rn) as shown in Figure 3. In ZIPLINE

(Algorithm 2), we first merge all n sets into one large set Ω and

sort its elements in ascending order by their value epi (ending

timestamps) where i ∈ [1, R] and p ∈ [1, n]. We consider the

elements are sorted from left to right in position of the set Ω.

Second, we define a set Z with the constraint that it contains

one timestamp from each worker p at any time as we will

use Z to scan every element of Ω following the timeline from

left to right. Intuitively, the set Z only checks the superscript

value p of each element epi to prevent duplication of the same

worker p. If the new timestamp from worker p is added, the

old (duplicate) timestamp of worker p in Z is removed. Third,

we let the set Z scan the set Ω by iterating one element from

Ω at a time. At the beginning of the scanning procedure, we

initialize Z by filling elements from the very left of Ω to Z
while satisfying its constraint till Z has n timestamps from

n workers. Then, we compute the minimum and maximum

difference (i.e., waiting time) dZ of Z based on the element

value epi . Assuming Z∗ is Z at the initialization, we store Z

Algorithm 2 ZipLine - search the set Z∗ with minimum dZ∗

1: procedure MINdSET(Ω) � the merged set Ω
2: Z ← ∅

� the set Z takes n elements with unique p value, p ∈ [1, n]
3: Ω ← sort(Ω)

� sort Ω in ascending order by element’s value (timestamp)
4: while |Z| < n do
5: ω ← very left element of Ω � ω is epi where i ∈ [1, R]
6: add ω to Z

� old element of Z is removed if it has the same p value as ω
7: Ω ← Ω− ω
8: dZ ← max(Z)−min(Z)
9: Z∗ ← Z; dZ∗ ← dZ

10: while Ω �= ∅ do� the solution is obtained when Ω is empty
11: Z ← Z −min(Z) � Z is in ascending order as of Ω
12: while |Z| < n do
13: ω ← very left element of Ω
14: add ω to Z
15: Ω ← Ω− ω
16: dZ ← max(Z)−min(Z)
17: if dZ < dZ∗ then
18: Z∗ ← Z; dZ∗ ← dZ
19: return Z∗ � the set with dZ∗

timeline

set Zmset Z1

d1 dmd6 d10

ZipLine searching for the set Z* with the minimum difference d*�

Fig. 3. The set Z zips from left to right on the timeline one data point at a
time. When Z has n distinct elements, dZ , the difference of minimum and
maximum elements of Z is computed. When the set Z reaches to the end
of the time line, the minimum dZ is attained. If multiple minimum dZs are
found, the first minimum dZ is selected. In the above case, d6 and d10 have
the same minimum value — d6 is chosen.

TABLE I
SUMMARY OF COMPUTATION AND SPACE COMPLEXITIES.

Algorithm Computation Space
GridScan (heuristic) O(R2n) O(Rn)
FullGridScan O(R2n2) O(Rn)
Zipline O(Rn2) O(Rn)

to Z∗ and dZ to dZ∗ . Next, we add one element from the left

of Ω to Z per iteration till Ω is empty. In each iteration, we

compute dZ and compare its value with dZ∗ . If dZ is smaller

than dZ∗ , we store Z to Z∗ and dZ to dZ∗ . After Rn iterations,

we attain the optimal set Z∗. The algorithm only uses Θ(n)
space to store Z∗. In each iteration, we also iterate through

the set Z to remove the duplicate element as the new one is

added. This operation maintains the invariant (constraint) of Z
and costs Θ(n). Therefore, the total computation complexity

is O(Rn2) and the space complexity is O(Rn) for storing Ω.

V. EXPERIMENTAL EVALUATION

In this section, we run experiments that aim to evaluate:

A. The runtime performance of ZIPLINE to the FullGridScan

baseline algorithm. The scalability of ZIPLINE as a

function of the number of workers and the parameter R.

B. The performance of ELASTICBSP compared to the clas-

sic BSP and other state-of-the-art synchronization mod-

els. Which one converges faster and to a higher accuracy?

Which one reaches to a fixed number of epochs faster?

1507

TABLE II
COMPUTATION TIME OF ALGORITHMS IN MICROSECONDS/μs.

Algorithm
10 Workers 100 Workers 1000 Workers

R=15 R=150 R=15 R=150 R=15 R=150
ZipLine 1.49e2 1.32e3 6.37e3 4.99e4 2.53e5 2.38e6
FullGridScan 1.54e3 4.67e4 8.13e4 2.15e6 4.04e6 2.07e8
GridScan 1.68e2 5.50e3 1.11e3 4.38e4 7.45e3 2.57e5

Dataset: We generate the datasets based on realistic scenarios

to evaluate the performance of algorithms. Table II lists the

different scales of configurations of datasets for the evaluation.

Environment: The overhead experiments of ZIPLINE and

baseline algorithms are running on a server with 24x Intel(R)

Xeon(R) CPU E5-2620 v3 @ 2.40GHz and 64GB ram.

A. ZIPLINE Performance Comparison

In Table II, we evaluate the algorithms with 15 predicted

iterations for each worker. We use 150 predicted iterations to

evaluate the scalability of the algorithms to R. The computa-

tion time cost of each algorithm is the average of 10 trials.

The combinations of elements from Matrix M : n × R
increases in exponential as the number of workers n scales

or in polynomial as predicted iterations R increments since

the combinations is (CR
1)n which we described in section IV.

Table II shows that as the number of workers increases the

computation time of FullGridScan increases much faster than

ZIPLINE. For a fixed number of workers, when the number of

predicted iterations per worker increases, the computation time

of FullGridScan increases much faster than others. GridScan
can be an alternative when the heuristic result is acceptable

and the number of workers is larger than 10.

B. Distributed Deep Learning using ELASTICBSP

We compare the performance of ELASTICBSP with BSP,

SSP and ASP by training DNN models from scratch under

each of them on a distributed environment. We set a small

threshold s=3 for SSP to ensure the convergence and achieve

higher accuracy [2]. For ELASTICBSP, we set R, the number

of predicted future iterations per worker, to 15, 30, 60, 120

and 240 respectively. We ran each experiment three trails and

chose the medium result based on the test accuracy.

Environment: We implement ELASTICBSP into MXNet [3]

which supports BSP and ASP models. The experiments are

running on 4 IBM POWER8 machines. Each machine has 4

NVIDIA P100 GPUs, 512 GB ram and 2×10 cores.

Datasets & DNN models: We train downsized AlexNet [11],

ResNet-50 [12] on datasets CIFAR-10 and CIFAR-100 [13].

1) Downsized AlexNet: We set mini-batch size to 128,

epoch to 400, learning rate 0.001 and weight decay 0.0005.

ELASTICBSP converges faster and to a higher accuracy than

other distributed paradigms (see Figure 4(a)). BSP converges

slower than ASP and SSP but reaches to higher accuracy than

both. The increase of R introduces more predicted elements to

be computed by ZipLine to determine the optimal synchroniza-

tion time, therefore, increases the computation overhead. As a

result, when R becomes larger, it offers nothing but consumes

more training time. To this model training, R=240 costs extra

training time to finish 400 epochs compared to the smaller

values. On this model, SSP, ASP, ELASTICBSP (R=15,30)

and BSP complete the fixed 400 epochs in ascending order.

2) ResNet-50: We set mini-batch size to 128, epoch to 300,

learning rate 0.5 and decay 0.1 at epoch 200. The results

are shown in Figure 4(b). ELASTICBSP converges faster and

to a slightly higher accuracy than BSP. Although ASP and

SSP converge faster than ELASTICBSP and BSP, both cost

much more training time to complete 300 epochs. Besides,

ELASTICBSP converges to a slightly higher accuracy than

ASP and SSP. ASP and SSP have no bulk synchronization

barriers thus have more iteration throughput causing faster

convergence. But larger iteration throughput introduces more

frequent communications between workers and server and so

increases the number of weight updates. However, weight

update has to be computed in sequence (as mentioned in

Section I). Thus, their tasks are queued on the server which

introduces extra delay. A thorough discussion on why ASP

and SSP converge faster but take more training time than BSP

can be read in [14]. On this model, ELASTICBSP, BSP, SSP

and ASP complete the fixed 300 epochs in ascending order.

Discussion: Above DNN models show that ELASTICBSP

converges to higher accuracy than BSP and takes less training

time when R is not too large. Note the different performances

of ELASTICBSP on the two DNN models are expected since

AlexNet contains 2 fully connected layers whereas ResNets

has no fully connected layers. Fully connected layers require

much less computation time compared to convolutional layers

while their representation requires much more parameters

than convolutional layers which leads to a large model size.

Convolutional networks without fully connected layers such as

ResNets takes much more computing time but consumes less

communication time due to its smaller model size as to fully

connected layer networks. When the ratio of communication

time and computation time is small, there is less training time

can be saved. More detailed analysis of the different behavior

on DNN models with different ratio of computation time and

communication time can be read in [8]. [14] also provides

detailed rationality on the different performances of distributed

training using ASP, BSP and SSP on different DNN models.

VI. RELATED WORK

A number of important works closely related to our research

has already been cited throughout the manuscript. Here, we

elaborate on three alternative models that have been proposed

to mitigate the slow down caused by the straggler problem

of the classic BSP. A-BSP [15] handles the straggler problem

by terminating the iteration job corresponding to the slowest

worker once the fastest workers have completed their jobs.

That way, the waiting time is eliminated. The remaining data

of the terminated job of the slowest worker is prioritized in

the next iteration. This design is limited to the CPU cluster

where samples are processed one after another. But in a GPU

cluster, a batch of samples are processed all at once in parallel;

GPU takes a batch of samples per iteration and computes

the gradients. Decreasing the data of a batch (iteration) does

1508

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 200 400 600 800 1000

A
cc

ur
ac

y

Training time in seconds

ASP

BSP

SSP, s=3

ElasticBSP, R=15

ElasticBSP, R=30

ElasticBSP, R=60

ElasticBSP, R=120

ElasticBSP, R=240

(a) Downsized AlexNet on CIFAR-10 dataset

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 500 1000 1500 2000 2500

A
cc

ur
ac

y

Training time in seconds

ASP

BSP

SSP, s=3

ElasticBSP, R=15

ElasticBSP, R=30

ElasticBSP, R=60

ElasticBSP, R=120

ElasticBSP, R=240

(b) ResNet-50 on CIFAR-100 dataset

Fig. 4. Comparison of synchronization models (n = 4)

not reduce the computation time of GPU. Furthermore, GPU

does not support preempt [16]. Terminating the job (iteration)

means losing all the computed result on that batch of data.

Chen et al. [17] deal with the straggler problem by adding

k extra backup workers to the distributed training with n
workers. In this approach, k + n workers are running for the

model training. For each iteration, the server only accepts the

first n randomly arrived gradient updates from the n faster

workers and moves on to the next iteration. The gradients from

the k slower workers are dropped. It does save on waiting

time of the faster workers but the computing resources of

the k slower workers in random iterations are wasted during

the training. ADACOMM [8] uses periodic-averaging SGD

(PASGD) for bulk synchronization in which workers are doing

local updates for τ iterations before a weight synchronization.

That way, the communication time of both uploading gradients

and downloading weights from the server per iteration is saved

for τ − 1 iterations. The straggler problem is not addressed in

this work. ADACOMM estimates the optimal τ for a bulk

synchronization of local weights based on the training loss.

Our ELASTICBSP predicts the optimal synchronization time

for all workers where each worker has different τ as opposed

to in ADACOMM τ is uniformly assigned to all workers.

VII. CONCLUSION

In this paper, we proposed ELASTICBSP for distributed

DNN model training using the parameter server framework.

ELASTICBSP is relaxing the bulk synchronization require-

ment of classic BSP and allows asynchronous gradient updates

to a certain extent to ensure the quality of convergence and

achieve higher accuracy. As a result, it increases the iteration

throughput of the workers. ELASTICBSP operates in two

phases per weight synchronization; first future R iterations

for each worker are predicted. Then, ZIPLINE is applied to

determine the optimal next synchronization barrier that min-

imizes the overall workers’ waiting time overhead. ZIPLINE

is a greedy one-pass algorithm and adds a minimal overhead

on the server, so it can be easily ported in popular distributed

machine learning frameworks. The experimental results show

that ELASTICBSP provides faster convergence than classic

BSP and achieves higher (or comparable) accuracy on the test

data sets than other state-of-the-art synchronization models.

ACKNOWLEDGEMENT

This work is funded by the Natural Sciences and Engineer-

ing Research Council of Canada (NSERC), IBM Canada and

the Big Data Research Analytics and Information Network

(BRAIN) Alliance established by Ontario Research Fund -

Research Excellence Program (ORF-RE).

REFERENCES

[1] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le et al., “Large scale distributed deep
networks,” in NIPS, 2012, pp. 1223–1231.

[2] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson,
G. Ganger, and E. P. Xing, “More effective distributed ml via a stale
synchronous parallel parameter server,” in NIPS, 2013, pp. 1223–1231.

[3] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao et al., “Mxnet:
A flexible and efficient machine learning library for heterogeneous
distributed systems,” arXiv preprint arXiv:1512.01274, 2015.

[4] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang et al., “Poseidon:
An efficient communication architecture for distributed deep learning on
{GPU} clusters,” in USENIX, 2017, pp. 181–193.

[5] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine
learning with the parameter server,” in OSDI, 2014, pp. 583–598.

[6] X.-W. Chen and X. Lin, “Big data deep learning: challenges and
perspectives,” IEEE access, vol. 2, pp. 514–525, 2014.

[7] A. V. Gerbessiotis and L. G. Valiant, “Direct bulk-synchronous parallel
algorithms,” Par. and Distr. Comput., vol. 22, no. 2, pp. 251–267, 1994.

[8] J. Wang and G. Joshi, “Adaptive communication strategies to achieve
the best error-runtime trade-off in local-update sgd,” SysML Conf, 2019.

[9] Z. Zhou, P. Mertikopoulos, N. Bambos, P. W. Glynn, Y. Ye, L.-J. Li,
and F.-F. Li, “Distributed asynchronous optimization with unbounded
delays: How slow can you go?” in ICML, 2018, pp. 1–10.

[10] K. Benz and T. Bohnert, “Dependability modeling framework: A test
procedure for high availability in cloud operating systems,” in VTC.
IEEE, 2013, pp. 1–8.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, ’12, pp. 1097–1105.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE CVPR, 2016, pp. 770–778.

[13] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Citeseer, Tech. Rep., 2009.

[14] X. Zhao, A. An, J. Liu, and B. X. Chen, “Dynamic stale synchronous
parallel distributed training for deep learning,” in ICDCS, 2019, pp.
1507–1517.

[15] S. Wang, W. Chen, A. Pi, and X. Zhou, “Aggressive synchronization
with partial processing for iterative ml jobs on clusters,” in Proceedings
of the 19th Int. Middleware Conference. ACM, 2018, pp. 253–265.

[16] M. Bauer, H. Cook, and B. Khailany, “Cudadma: optimizing gpu
memory bandwidth via warp specialization,” in SC. ACM, 2011, p. 12.

[17] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting
distributed synchronous sgd,” arXiv preprint arXiv:1604.00981, 2016.

1509

